Data Representation

Learning Purpose

Previous Learning

- Understanding the binary number system
- Converting between binary and denary

By the end of this lesson I will be able to:

- Understand the need for hexadecimal
- Convert between hexadecimal and binary

Future Learning

Data Representation:

- Converting between denary and hexadecimal

Subject Specific Vocabulary: hexadecimal, nibble, byte, bit

Preparation

OGo to Class Notebook
OSection: Data Representation
OPage: Binary

Binary Number System in Computing

Refresher - binary number system

O The binary number system works on base 2 number system, consisting of two values: 0 and 1

O The binary number system is used in computer devices because it is easier to represent ONLY two states (on and off) when using electronic circuits (switches)

Binary place values

O In GCSE Computer Science, we usually use an 8 - bit number. 8 - bit numbers are referred to as a byte.

Hexadecimal

O Because binary numbers are very long ...
Oexample, the denary number 150 is 10010110 in binary,
○ ... they are not ideal for use by humans - we could easily make a mistake when writing down long streams of 1 s and 0 s .
O Hexadecimal number system works on base 16 - that is, there are 16 dififerent symbols to represent each single value
O The hexadecimal system uses numbers $\mathbf{0}$ to 9 , then uses letters \mathbf{A} to \mathbf{F} to represent the remaining values

Hexadecimal

O This table shows the relationship between denary, binary and hexadecimal:

Denary	Bin	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Converting Binary to Hexadecimal

O To convert binary to hexadecimal, starting from the right, we group the binary numbers into groups of 4 (or nibbles)
O We then convert each nibble into a single hexadecimal value.

Example:

O Therefore 01011100 is equivalent to $\mathbf{5 C}$

Denary	Bin	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Exercises - Bin to Hex

Convert the following from binary into hexadecimal:

1. 00001000
2. 01000100
3. 11000011
4. 11111111
5. 10100100
6. 11111111 FF

Worksheet - Bin to Hex

Worksheet Answers - Bin to Hex

- Answer $1=10$
- Answer $5=93$
- Answer $2=29$
- Answer $6=$ A8
- Answer $3=46$
- Answer 7 = EE
- Answer $4=54$
- Answer $8=\mathrm{DE}$

Converting Hexadecimal to Binary

O To convert hexadecimal into binary, we convert each single hexadecimal value into a four-digit binary number.

Example:
O DA

O The D is equivalent to 13 in denary or 1101 in binary
O The A is equivalent to 10 in denary or 1010 in binary
O Therefore DA is equivalent to 11011010 in binary

Denary	Bin	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Exercises - Hex to Bin

Convert the following from Hexadecimal into binary (provide your answers as a byte)

1. 1200010010
2. 7C 01111100
3. 5501010101
4. 6D 01101101
5. FA 11111010

Worksheet - Hex to Bin

Worksheet Answers - Hex to Bin

- Answer $1=00101111$
- Answer 5 = 10011101
- Answer 2 = 00110000
- Answer 6 = 10101001
- Answer $3=01001101$
- Answer 7 = 11001011
- Answer 4 = 01100111
- Answer 8 = 11101010

Task - How to convert

OAdd to your notes to explain:
OHow to convert from binary to hexadecimal
OHow to convert from hexadecimal to binary
OUse an example

